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Abstract

Crop rotation are key features of environmentally friendly cropping systems. Yet

crop sequence acreages, which are required for estimating crop rotation effects, are

rarely recorded in farm-level datasets such as the farm accounting panel datasets gener-

ally used to estimate economic models of farmers’ crop production decisions. We pro-

pose here an original estimation procedure aimed at estimating crop rotation effects on

yield and chemical input uses, while simultaneously reconstructing farms’ unobserved

crop sequence acreages. This approach relies on a bi-level optimization problem which

is solved by using a Mathematical Program with Equilibrium Constraints (MPEC) ap-

proach. Simulated data, based on real observations of farms’ production decisions for

four crops are used to assess the performance of our approach. The results obtained on

these simulated data demonstrate the ability of our proposed approach to simultane-

ously recover crop sequence acreages and estimate crop rotation effects on crop yield

and input uses.

Keywords: crop rotation effects, crop sequence, mathematical programming with equi-

librium constraints (MPEC), simulation.
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1 Introduction

Agri-environmental policies are now assessed based on environmental criteria and are in-

creasingly designed by referring to environmentally friendly crop production practices. Crop

diversification has notably been one of the main objectives of the Common Agricultural Pol-

icy (CAP) since the 2013 reform, which introduced a set of crop diversification obligations as

eligibility criteria for farmers to receive green direct payments. The new CAP, implemented in

2023, includes similar standards on agricultural crop acreages as part of its cross-compliance

greening system and incorporates new conditionality rules to, for instance, encourage farm-

ers to allocate significant share of their land to crops with environmental benefits such as

nitrogen-fixing crops. Crop rotations effects thus appear to be key elements to consider in

economic models aimed at simulating or evaluating agri-environmental policies. Yet, the

use and the effects of crop rotations are poorly documented (Meynard et al., 2013). Farm-

ers’ crop sequence acreages are in fact rarely recorded, and crop rotation effects on yields

and input uses are mostly measured based on experimental data and only for a few major

crop pairs. In the agricultural production economics literature, the first models describ-

ing farmers’ crop rotation choices were mathematical programming models. Until the mid-

1980s, these models adopted a normative view and focused on the optimization of the use

of crop rotation effects in farmers’ crop sequence acreages choices through the specifica-

tion of linear programming (LP) problems. The first econometric models aimed at account-

ing for farmers’ use of crop rotation effects were developed based on the dynamic acreage

choice model proposed by Eckstein (1984) and have been employed since then (e.g. Orazem

and Miranowski (1994); Vitale et al. (2009)). Their estimation requires standard farm ac-

countancy data, but they models rely on very crude assumptions as regards to crop rotation

effects. Thomas (2003) explicitly accounts for crop rotation (through nitrogen carry-over ef-

fects from previous crops) in a multi-crop model of land allocation and fertilizer application

decisions, to derive an optimal nitrogen management. However, because he lacks data on

crop sequence acreages, he tests alternative rotations schemes and cannot provide numeric

measurements of the effects of each crop pair on nitrogen uses. Hennessy (2006) proposes

a theoretical analysis of the effects of crop sequences on yield and optimal input use lev-

els, thereby providing rule of thumb for choosing between monoculture and rotation; his

analysis is however limited to two crops: corn and soybean. Estimating crop rotation effects

on crop yields and input uses based on farm accountancy data would actually be relatively

straightforward if farmers crop sequence acreages were observed in those data. Standard es-

timation approaches could be employed such as regressing farmers’ yields and inputs uses
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per crop on crop sequence acreages. Unfortunately, accountancy data do not contain such

information on farmers’ crop sequence acreage choices. There is thus a need to devise an

estimation approach allowing to estimate the effects of crop rotations without observing

farmers’ crop sequence choices, which is our main objective in this paper. Our approach

relies on the work of Carpentier and Gohin (2015) who propose a theoretical model of opti-

mal stationary crop sequence choices, based on a dynamic programming framework, which

explicitly accounts for the effects of crop rotations on expected yields and variable input uses

on farmers’ acreage choices. Based on this theoretical framework, we aim at estimating crop

rotation effects while simultaneously recovering crop sequence choices that are consistent

with the crop acreages observed in the data and with the estimated crop rotation effects.

Our estimation problem is in fact closely related to those considered by Rust (1987) for es-

timating dynamic discrete choice models, or Berry et al. (1995) for estimating differentiated

good demand systems, or more recently Su and Judd (2012) who devise an approach which

is under some conditions computationally faster than Rust (1987)’s approach. From a prac-

tical viewpoint, our estimation approach is based on interrelated structural models: i yield

and chemical input demand models, and ii crop sequence acreage share models. Estimating

these models consists of solving, in the parameters describing the effects of crop rotations

on crop yields and input uses, a Bi-Level Programming (BLP) problem, which is a particu-

lar case of Mathematical Programs with Equilibrium Constraints 1. The upper level problem

consists of optimizing, in these crop rotation parameters, a statistical criterion based on the

observed crop yield and chemical input use levels, and on the crop sequence acreages re-

covered at the lower level. The lower level recovers the crop sequence acreages assuming

that they are optimally chosen by farmers. The rest of the paper is organized as follows. The

proposed approach to estimate the crop rotation effects is presented in the next section. We

then discuss empirical estimation issues and present results obtained on simulated data in

order to assess the empirical performances of our approach. Finally, we conclude.

2 Theoretical framework for estimating crop rotation effects

2.1 Definitions and notation

Farm accountancy data generally used to estimate microeconomic models of farmers’ pro-

duction choices provide information on the crop production decisions (yields, input uses,

acreage choices, ...) of each sampled farm (i = 1, ...,N) during several periods (t = 1, ...,Ti ).

1see Luo et al. (1996) for a thorough description of MPEC problems
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Let denote by K = {1, ...,k, ...,K } the set of crops farmers can produce, and by J = {1, ..., j , ..., J },

the set of chemical inputs used by farmers. The total arable land area available to farmer

i in period t is denoted by Ai t , and the vector of acreages devoted to each crop by ai t ≡(
ak,i t : k ∈K

)
, such that

∑
k∈K ak,i t = Ai t . Obtained yield levels are denoted by

(
yk,i t : k ∈K

)
,

and the vector of chemical inputs quantities used for crop k by xk,i t ≡
(
x j ,k,i t : j ∈J

)
. qk,i t ≡(

pk,i t ,−wi t
)

is a vector of netput prices, with pk,i t the output price of crop k and w j ,i t the

price of input j for farmer i in period t . Although we should bear in mind that farmers do

not necessarily grow all the crops belonging to the crop set K every year, we take as a con-

vention that the crops grown in period t are indexed by k while those grown in period t −1

are indexed by m. Crop pair (m,k) thus denotes a sequence of crops: crop k is grown in

period t on plots where crop m was grown in period t −1.

The gross margin of crop k grown after crop m, i.e. the gross margin of crop sequence

(m,k), is defined asπmk,i t = ymk,i t pk,i t−
∑

j x j ,mk,i t w j ,i t , with ymk,i t the yield of crop k grown

after crop m, and x j ,mk,i t the level of chemical input j used for crop k grown after crop m .

πmk,i t provides a measure of the economic benefits of the considered crop sequence. Both

ymk,i t and x j ,mk,i t are unobserved quantities, because the crop m which precedes k is not

recorded in the data.

Let denote smk,i t the acreage of crop k grown, by farmer i in year t , on land with previous

crop m . The share of acreage of crop k grown on land with previous crop m by farmer i in

year t , is denoted by zmk,i t , and writes

zmk,i t =


smk,i t

ak,i t
if ak,i t > 0

0 if ak,i t = 0

with
∑
m

zmk,i t = 1

We define pre-crop effects as differences with respect to a reference previous crop. For

instance, considering crop r (k) as the reference previous crop for crop k, the pre-crop effect

of previous crop m on the yield of crop k writes θ(y)
mk,i t = ymk,i t −yr (k)k,i t , and that of previous

crop m on the use of chemical inputs of crop k writes θ(x)
j ,mk,i t = x j ,mk,i t −x j ,r (k)k,i t .

2.2 Assumptions and models

We assume that farmers choose their crop acreages by considering the effects of previous

crops on the production process (yields and input uses) of the current crops. They are thus

assumed to choose their crop sequence acreages smk,i t , i.e. to choose, in year t , the acreage

of crop k produced on land where crop m was produced in year t−1. Because farmers cannot

use more or less acreage of a previous crop than the crop acreages defined by their previous
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year crop acreage choices, their crop sequence acreage choices are necessarily constrained.

These crop rotation constraints state that the demand for land with a given previous crop m

equals the past acreage of this crop:

∑
k∈K

smk,i t = am,i t−1(1)

We assume that the observed crop yields yk,i t , and observed chemical input uses x j ,k,i t

are respectively equal to the sum of the corresponding crop sequence yields ymk,i t and to

the sum of the corresponding crop sequence input uses x j ,mk,i t , weighted by corresponding

crop sequence acreage shares zmk,i t :
yk,i t = ∑

m∈K

zmk,i t ymk,i t

x j ,k,i t = ∑
m∈K

zmk,i t x j ,mk,i t

for k ∈K and j ∈J(2)

Pre-crop effects on yields and input uses could easily be estimated from equation system

(2) if crop sequence acreage shares were observed in farm-level data. This is unfortunately

not the case. As a result, modelling assumptions need to be imposed to allow the estimation

of pre-crop effects,
(
θ

(y)
mk,i t ,θ(x)

j ,mk,i t : j ∈J
)
, while simultaneously recovering crop sequence

acreage shares, zmk,i t .

First, we assume that unoserved crop sequence yields and chemical input uses can be

decomposed as:ymk,i t =α(y)
k,t ,0 +θ

(y)
mk,0 +e(y)

k,i t

x j ,mk,i t =α(x)
j ,k,t ,0 +θ(x)

j ,mk,0 +e(x)
j ,k,i t

with E[e(y)
k,i t ] = E[e(x)

j ,k,i t ] = 0 for k ∈K and j ∈J(3)

where the
(
α

(y)
k,t ,0,α(x)

j ,k,t ,0 : j ∈J
)

terms are year-specific terms aimed at capturing the ef-

fects of economic and weather shocks affecting all farms simultaneously, the
(
θ

(y)
mk,0,θ(x)

j ,mk,0

)
terms are pre-crop effects assumed to be common to all farms, and ek,i t =

(
e(y)

k,i t ,e(x)
j ,k,i t : j ∈J

)
are random terms. Replacing in equations (2) ymk,i t and x j ,mk,i t by their corresponding ex-

pression in equations (3) yields the following equations:yk,i t =α(y)
k,t ,0 +z

′
k,i tθ

(y)
k,0 +e(y)

k,i t

x j ,k,i t =α(x)
j ,k,t ,0 +z

′
k,i tθ

(x)
j ,k,0 +e(x)

j ,k,i t

(4)

with θ(x)
r (k)k,0 = 0, ∀k ∈K , θ(x)

r (k)k,0 = 0, ∀(k, j ) ∈K ×J , and E[e(y)
k,i t ] = E[e(x)

j ,k,i t ] = 0.

Pre-crop effectsθk,0 =
(
θ

(y)
k,0,θ(x)

j ,k,0 : j ∈J
)

and crop sequence acreage share vectors zk,i t =
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(
zmk,i t : m ∈K

)
are unobserved.

We assume that error terms ek,i t affecting the levels of yield/chemical inputs uses do not

depend on crop sequence acreage shares zk,i t , or otherwise stated, that zk,i t is exogenous

with respect to the error term ek,i t . This assumptions it admittedly restrictive but relaxing

it would significantly increase the complexity of an estimation problem that is already chal-

lenging. Furthermore, it can be partially justified by the fact that the acreage choice decisions

(and thus, crop sequence acreage choice decisions) are made before harvest, and although

disturbances affecting input uses can correlate with crop sequence choices, this correlation

is likely to be weak as input applications are spread throughout the cropping season.

To circumvent the fact that the crop sequence acreage share vectors zi t =
(
zk,i t : k ∈K

)
are unobserved in our data, we rely on a standard economic rationality assumption. As

shown by Carpentier and Gohin (2015), under this rationality assumption, crop sequence

acreage shares can be defined as a solution to a linear programming (LP) problem stating

that forward-looking farmers choose their optimal crop sequence acreages so as to maxi-

mize their expected returns at the farm level under specific constraint on acreages. This

allows devising an approach to recover the unobserved crop sequence acreage choices of a

farmer based on his observed crop acreage choices (ai t ,ai t−1), with ai t =
(
ak,i t : k ∈K

)
and

ai t−1 =
(
am,i t−1 : m ∈K

)
, and given estimates of pre-crop effects

(
θ

(y)
k,0,θ(x)

j ,k,0 : j ∈J
)
.

We define the following set of constraints:

Unfeasibility constraints IMPi t (ẑi t ) = 0: a crop sequence (m,k) is unfeasible if either ak,i t =
0 or am,i t−1 = 0. In that case, zmk,i t = 0.

Acreage share constraints SHAi t (ẑi t ) ≥ 0: the terms zmk,i t being defined as the share pre-

vious crop m in the acreage of current crop k, the elements of ẑi t must be non-negative:

zmk,i t ≥ 0∀(m,k) ∈K ×K , and sum to 1:
∑

m∈K zmk,i t = 1∀k ∈K .

Crop rotation constraints ROTi t (ẑi t ) = 0: the supply of previous crop acreage, am,i t−1 must

equal the demand of previous crop m for current crops k,
∑

k∈K smk,i t = am,i t−1, in order to

ensure a supply-demand equilibrium
∑

k∈K ak,i t zmk,i t = am,i t−1 for m ∈K .

Let consider a farmer i who has, in period t , to allocate her/his previous crop acreage

ai ,t−1 to her/his current crop acreage ai ,t . The expected profit of this farmer is given by

Πi t =
∑

k∈K

ak,i t

∑
m∈K

ẑmk,i tπmk,i t

5



where his crop sequence acreage share choices are given by the ẑmk,i t terms and the expected

profit of a unit of land of crop k with previous crop m is given by

πmk,i t =α
′
k,t qk,i t +θ

′
mk qk,i t with αk,t =

(
α

(y)
k,t ,α(x)

j ,k,t : j ∈J
)
.

Using this definition of πmk,i t allows rewriting the expected profit of farmer i in year t as

Πi t =
∑

k∈K

ak,i t

(
α

′
k,t qk,i t

)
︸ ︷︷ ︸

does not depend on crop sequence acreage choices

+ ∑
k∈K

∑
m∈K

ak,i t ẑmk,i t

(
θ

′
mk qk,i t

)
︸ ︷︷ ︸

objective function to maximize to choose crop sequence acreages

The expected return maximization problem of farmer i in period t , denoted LPi t , can

thus be defined as follows:

(5) Problem LPi t : max
ẑi t



∑
k∈K

∑
m∈K

ẑmk,i t ak,i t

(
θ

′
mk qk,i t

)
s.t.

SHAi t (ẑi t ) ≥ 0,ROTi t (ẑi t ) = 0,IMPi t (ẑi t ) = 0


where θmk =

(
θ

(y)
mk ,θ(x)

j ,mk : j ∈J
)

. θ= (
θmk : (m,k) ∈K 2

)
.

Yet, defining estimates of zi t as a solution to an optimization problem is appealing mostly

from a theoretical viewpoint. In fact, the solutions in ẑi t to problem LPi t may be multiple,

implying that the solution to this problem is defined as a solution set Zi t (θ). Condition ẑi t ∈
Zi t (θ) simply states that the crop sequence acreage zi t is optimal for farmer i in year t given

his current and previous crop acreages (ai t ,ai t−1) and the crop rotation effects measured by

θ. Moreover, even in cases where zi t is uniquely defined, it exhibits salient discontinuities in

the parameter vector θ. These discontinuities underlie significant empirical issues arising

when estimating θ.

Carpentier and Gohin (2014) showed that adding an entropic perturbation term to the

objective function of problem LPi t allows alleviating these issues. They showed that the

solution in ẑi t to the following perturbed version of LPi t denoted SmLPρi t to be particularly

convenient from an empirical viewpoint:

(6) Problem SmLPρi t : max
ẑρi t



∑
k∈K

∑
m∈K

ẑmk,i t ak,i t

(
θ

′
mk qk,i t

)
−ρi t

(
ẑi t ,ρ

)
s.t.

SHAi t (ẑi t ) ≥ 0,ROTi t (ẑi t ) = 0,IMPi t (ẑi t ) = 0


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where

ρi t

(
ẑi t ,ρ

)= ρ−1
∑

k∈K

ak,i t

∑
m∈K

ẑmk,i t ln ẑmk,i t

The solution to this optimization problem, denoted zρi t , is unique and converges to a

point in Zi t (θ) as the (positive) perturbation parameter ρ grows to infinity, indicating that

zρi t can be considered as a reliable approximate solution to problem LPi t when ρ is suffi-

ciently large.

Carpentier and Gohin (2014) also showed that zρi t can be defined as a particularly well-

behaved function of
(
θ, µ̂i t ;ρ

)
. This function, denoted by z0

i t

(
θ, µ̂i t ;ρ

)
, is defined in analyti-

cal closed form and smooth – i.e. continuously differentiable at will – in
(
θ, µ̂i t

)
and writes:

z0
mk,i t

(
θ, µ̂i t ;ρ

)= exp
[
ρ

(
q

′
k,i tθmk −µm,i t

)]
∑

n∈K

exp
[
ρ

(
q

′
k,i tθnk −µn,i t

)]
with µ̂i t , vector of the Lagrange multipliers associated to the crop rotation constraints

ROTi t (ẑi t ) = 0.

This ‘smoothness‘ property is particularly valuable when this function is used to con-

struct objective functions of optimization problem to be solved in
(
θ, µ̂i t

)
since it allows us-

ing standard gradient-based optimization algorithms.

The solution to problem SmLPρi t is zρi t = z0
i t

(
θ,µρi t ;ρ

)
with µ

ρ

i t the optimal value of the

Lagrange multiplier vector associated to the crop rotation constraints. This result has a nice

economic interpretation. Indeed, since these constraints are equilibrium constraints, ensur-

ing the equality between the supply and demand of land devoted to the different previous

crops, µρi t can be interpreted as a vector of shadow prices of land with specific previous crops.

3 Smooth MPEC estimation approach

Our setup provides two main elements for devising an estimation approach of the effects of

pre-crop on yields and input uses:

(a) statistical models describing how the observed crop netput quantities
(
yk,i t ,x j ,k,i t : j ∈J

)
depend on farmers’ unobserved crop sequence acreage share choices zk,i t , and on the crop

rotation parameters θ0 to be estimated;

(b) procedures to obtain crop sequence acreage share choices zi t consistent with the es-

timated values of the crop rotation parameters θ0 and the observed crop acreage choices

(ai t ,ai t−1), based the SmLP problem;

Our general estimation approach combine these components in the following theoretical
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bi-level programming estimation problem:

Problem U : min
θ



∑
k∈K

∑
(i ,t )∈S

e(y)
k,i t

(
zk,i t ;θ(y)

k

)2 + ∑
j∈J

∑
k∈K

∑
(i ,t )∈S

e(x)
j ,k,i t

(
zk,i t ;θ(x)

j ,k

)2

s.t.

yk,i t =α(y)
k,t +z

′
k,i tθ

(y)
k +e(y)

k,i t ∀ k ∈K

x j ,k,i t =α(x)
j ,k,t +z

′
k,i tθ

(x)
j ,k +e(x)

j ,k,i t ∀ (k, j ) ∈K ×J

zi t ∈Zi t (θ) , (i , t ) ∈ S



Problem Li t : Zi t (θ) = argmax
ẑi t



∑
k∈K

∑
m∈K

ẑmk,i t ak,i t

(
θ

′
mk qk,i t

)
s.t.

SHAi t (ẑi t ) ≥ 0,ROTi t (ẑi t ) = 0,IMPi t (ẑi t ) = 0

∀(i , t ) ∈ S

Problem U is the upper level (master) problem. It seeks to minimize the sum of squared

residuals of the considered set of netput quantity models with respect to the crop rotation

parameter vector θ. This simple OLS criterion yields a consistent estimator of θ0 under the

assumptions underlying our netput quantity models. More sophisticated estimators could

be used, such as SUR-type estimators but the related efficiency gain is likely to be limited.

Problems Li t are the lower level (subordinate) problems. They aim to deliver ‘estimates‘

of the crop sequence acreage vectors zi t that are used as explanatory variable vectors in the

upper level problem.

BLP problems cannot be solved directly according to their theoretical formulation. A

BLP problem is generally solved by transforming it into a standard ‘one-level‘ constrained

optimization problem, according to the so-called ‘mathematical program with equilibrium

constraints‘ (MPEC) approach (Luo et al., 1996). In this approach, the lower level problems

LPi t are replaced by the optimality conditions characterizing their solutions. These KKT

conditions are the ‘equilibrium constraints‘ involved in the resulting MPEC problem. In our

case, adopting the MPEC approach consists of solving the following problem:
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min
θ,µ,λ



∑
k∈K

( ∑
(i ,t )∈S

ϵ̂OLS
k,i t

(
λ

(y)
k ,θ(y)

k ;zρi t

(
θ,µi t ;ρ

))2
)
+ ∑

j∈J

∑
k∈K

( ∑
(i ,t )∈S

ϵ̂OLS
j ,k,i t

(
λ

(y)
j ,k ,θ(y)

j ,k ;zρi t

(
θ,µi t ;ρ

))2
)

s.t.

yk,i t =α(y)
k,t +z

′
k,i tθ

(y)
k +ϵOLS

k,i t ∀k ∈K

x j ,k,i t =α(x)
j ,k,t +z

′
k,i tθ

(x)
j ,k +ϵOLS

j ,k,i t ∀(k, j ) ∈K ×J

zρmk,i t

(
θ,µi t ;ρ

)= exp
[
ρ

(
q

′
k,i tθmk −µm,i t

)]
∑

n∈K

exp
[
ρ

(
q

′
k,i tθnk −µn,i t

)] ∀(m,k) ∈K ×K ,∀am,i t−1 > 0,ak,i t > 0

∑
k∈K

ak,i t zρmk,i t

(
θ,µi t ;ρ

)= am,i t−1∀m ∈K and am,i t−1 > 0

θ
(y)
r (k)k = θ(x)

j ,r (k)k = 0and µr (k),i t = 0 ∀(k, j , i , t ) ∈K ×J ×S

zρmk,i t

(
θ,µi t ;ρ

)= θ
(y)
mk = θ(x)

j ,mk = 0 if (m,k) is unfeasible ∀( j , i , t ) ∈J ×S

Note that the acreage share constraints (SHAi t (ẑi t ) ≥ 0) are automatically fulfilled due to

the shape of the expression of crop sequence acreage shares.

This problem is to be solved in the crop rotation parameter vector θ, crop sequence

acreages ẑ = (ẑi t ) and crop rotation constraint Lagrange multiplier vectors µ̂= (
µ̂i t : (i , t ) ∈ S

)
and λ̂ = (

λ̂i t : (i , t ) ∈ S
)
, the Lagrange multiplier vector associated to the acreage share con-

straints (SHAi t (ẑi t ) ≥ 0).

Standard (gradient-based) algorithms perform well for solving this smooth nonlinear op-

timization problem.

The next step is to assess through simulations the empirical performance of our pro-

posed smooth MPEC estimator. We consider two cases regarding the rationality assump-

tion. In the first case, we consider that crop sequence acreages are entirely determined by

crop rotation effects, and thus by the crop sequence gross margin. In a second case, we add

some disturbances to the crop sequence gross margin to acknowledge that farmers’ crop se-

quence acreage choices may be driven by motives other than profit maximization, e.g., by

environmental concerns.
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4 Empirical performance of the smooth MPEC estimator

4.1 Simulating the data

In order to assess the empirical performance of this estimator, we proceed as follow. First,

we create a set of simulated data in three steps:

i) We act as if we observed the crop rotation effects, our parameters of interest, so we set

the population parameters of crop rotation effects;

ii) Then we obtain the crop sequence acreage share consistent with the population pa-

rameters by solving the LPi t problem;

iii) We simulate the observed netputs (yield and input uses) from the population param-

eters defined in step i) and the crop sequence acreages obtained in ii), and adding a noise

with zero mean drawn from the normal distribution;

iv) Second, we run the smooth MPEC procedure by using the observed crop acreages, the

simulated yield and chemical input uses of step iii), leading to estimates of the crop rotation

effects and the crop sequence acreage shares.

The steps iii) and iv) are repeated B times, producing B estimates of crop rotation ef-

fects and crop sequence acreage shares as well. We can average over the B estimates and

compare these averages with the corresponding values in the population parameters. Asso-

ciated standard deviations are computed as well. If the average of the B estimates are close

enough to the values of the population parameters, then our smooth MPEC procedure yields

an unbiased estimate of the crop rotation effects.

In what follows, we restrict the crop set to four main crops:

K = {
wheat, barley, rapeseed, sugar beet

}
. We consider in our simulation a sample of

observed data on crop acreages vector ai t , output and input prices vector qk,i t , to get a data

structure on acreages and prices that has a meaning in the economic sense, and close to what

is observed. This sample consists of 3685 observations describing the production choices of

722 farms.

We set the following values of all the pairs (m,k) for θmk,0

Table 1: Population parameters for crop rotation effects on yield

Current crops
Wheat Barley Rapeseed Sugar beet

P
re

v.
cr

o
p

. Wheat -0.50 0.00 0.00 0.00
Barley -0.80 -0.70 0.15 0.10
Rapeseed 0.00 0.50 0.05 -0.20
Sugar beet -0.10 0.10 0.08 -0.30

Note. Rapeseed is the reference previous crop for wheat, and wheat is
the reference previous crop for barley, rapeseed and sugar beet.

10



Table 2: Population parameters for crop rotation effects on input uses

Current crops
Wheat Barley Rapeseed Sugar beet

Fertilizer use

P
re

vi
o

u
s

cr
o

p
s

Wheat 0.40 0.00 0.00 0.00
Barley 0.30 0.10 0.10 -0.10
Rapeseed 0.00 -0.30 -0.05 -0.20
Sugar beet 0.10 -0.40 -0.10 0.10

Pesticide use
Wheat 0.30 0.00 0.00 0.00
Barley 0.20 0.10 -0.20 0.10
Rapeseed 0.00 -0.20 0.15 0.20
Sugar beet -0.15 -0.30 0.10 0.10

Note. Rapeseed is the reference previous crop for wheat, and wheat is
the reference previous crop for barley, rapeseed and sugar beet.

In order to account for the fact that farmers crop sequence acreage choices might be

driven by factors other than profit maximization, we consider simulating a stochastic profit

as follows: π̃mk,i t =θ
′
mk,0qk,i t +ωmk,i t with ωmk,i t ∼N

(
0,σ2

ωmk

)
where σ2

ωmk
is chosen such

that σ2
ωmk

= var
(
ωmk,i t

)= var
(
π̃mk,i t

)
/2

Table (3) displays the average of the solution to the LPi t problem, i.e., zmk,0 = (Card(S))−1∑
(i ,t )∈S

ẑmk,i t where Card(S) is the number of elements in S.

Table 3: Average optimal crop sequence acreage shares

Current crops
Wheat Barley Rapeseed Sugar beet

P
re

v.
cr

o
p

. Wheat 0.24 0.45 0.43 0.47
Barley 0.08 0.03 0.44 0.51
Rapeseed 0.44 0.38 0.05 0.02
Sugar beet 0.24 0.15 0.08 0.00

We now generate the yield and chemical input use data from these models:

ysim
k,i t = ȳk +z

′
k,i tθ

(y)
k,0 +υ

(y)
k,i t

xsim
j ,k,i t = x̄ j ,k +z

′
k,i tθ

(x)
j ,k,0 +υ(x)

j ,k,i t

with

υ
(y)
k,i t ∼N

(
0,σ2

υk

)
υ(x)

j ,k,i t ∼N
(
0,σ2

υ j ,k

) ∀(k, j , i , t ) ∈K ×J ×S

where σ2
υk

and σ2
υ j ,k

are chosen such that the noise explains a large share of the variations of

the simulated yield/chemical input uses:

σ2
υk

= var
(
ysim

k,i t

)
=σ2

υ j ,k
= var

(
xsim

j ,k,i t

)
≈ 0.95 ∀(k, j ) ∈K ×J

We use the data simulated above to estimate the crop rotation effects. We provide suit-

able starting values for the smooth MPEC problem by estimating successively the problems

Li t and U. The value of the entropic perturbation parameter used for the estimation is set to

ρ = 0.1; the model leads to an overflow for values of ρ higher than 0.1
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The simulation of the netputs and the simultaneous estimation of the crop rotation ef-

fects/crop sequence acreage shares are repeated B = 100 times, leading to a sequence of B

estimates of θmk,0 denoted
(
θ̂mk,b : b = 1, ...,B

)
. We are interested in the mean and standard

deviation of our estimates:

θ̂mk,B = B−1
B∑

b=1
θ̂mk,b and σ̂mk,B =

(
B−1

B∑
b=1

θ̂
2
mk,b − θ̂

2
mk,B

)1/2

The average of crop sequence acreage shares are obtained by computing the quantities:

ẑρmk,i t ,B = B−1
B∑

b=1
ẑρmk,i t ,b and ẑρmk,B = (Card(S))−1

∑
(i ,t )∈S

ẑρmk,i t ,B

We present in Tables (4-6) the obtained results.

Table 4: Average of crop rotation effects on yield levels

Current crops
Wheat Barley Rapeseed Sugar beet

θ̂mk,B θmk,0 θ̂mk,B θmk,0 θ̂mk,B θmk,0 θ̂mk,B θmk,0

P
re

vi
o

u
s

cr
o

p
s

Wheat
-0.39

-0.50
0.00

0.00
0.00

0.00
0.00

0.00
(0.05) (-) (-) (-)

Barley
-0.72

-0.80
-0.57

-0.70
0.08

0.15
0.12

0.10
(0.12) (0.31) (0.01) (0.02)

Rapeseed
0.00

0.00
0.36

0.50
0.00

0.05
0.09

-0.20
(-) (0.06) (0.26) (1.41)

Sugar beet
-0.09

-0.10
0.08

0.10
0.04

0.08
-0.05

-0.30
(0.07) (0.27) (0.23) (0.72)

Standard deviations, σ̂mk,B are displayed in parentheses below the corresponding average estimates, θ̂mk,B .
Rapeseed is the reference previous crop for wheat, and wheat is the reference previous crop for barley, rapeseed and sugar beet.

Table 5: Average of crop rotation effects on chemical input use levels

Current crops
Wheat Barley Rapeseed Sugar beet

θ̂mk,B θmk,0 θ̂mk,B θmk,0 θ̂mk,B θmk,0 θ̂mk,B θmk,0

Fertilizer use levels

P
re

vi
o

u
s

cr
o

p
s

Wheat
0.31

0.40
0.00

0.00
0.00

0.00
0.00

0.00
(0.05) (-) (-) (-)

Barley
0.23

0.30
0.01

0.10
0.11

0.10
-0.09

-0.10
(0.07) (0.15) (0.01) (0.02)

Rapeseed
0.00

0.00
-0.27

-0.30
-0.06

-0.05
-0.90

-0.20
(-) (0.04) (0.62) (6.68)

Sugar beet
0.06

0.10
-0.35

-0.40
-0.16

-0.10
0.12

0.10
(0.06) (0.18) (1.04) (3.94)

Pesticide use levels

Wheat
0.19

0.30
0.00

0.00
0.00

0.00
0.00

0.00
(0.05) (-) (-) (-)

Barley
0.13

0.20
-0.02

0.10
-0.19

-0.20
0.05

0.10
(0.05) (0.14) (0.03) (0.01)

Rapeseed
0.00

0.00
-0.19

-0.20
0.18

0.15
2.02

0.20
(-) (0.04) (0.68) (13.32)

Sugar beet
-0.17

-0.15
-0.28

-0.30
0.49

0.10
0.36

0.10
(0.05) (0.14) (1.84) (5.38)

Standard deviations, σ̂mk,B are displayed in parentheses below the corresponding average estimates, θ̂mk,B .
Rapeseed is the reference previous crop for wheat, and wheat is the reference previous crop for barley, rapeseed and sugar beet.
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The average of the estimated crop rotation parameters are quite close to their population

value, except for some crop sequences. The standard errors, in parentheses, show that most

coefficients are estimated with a high level of accuracy. In fact, as evidenced in Table (6),

the estimated crop rotation parameters that appear to be quite far from their “true“ values

and are estimated with less accuracy are those that correspond to very small crop sequence

acreage shares.

Table 6: Average of crop sequence acreage shares

Current crops
Wheat Barley Rapeseed Sugar beet

ẑρmk,B zmk,0 ẑρmk,B zmk,0 ẑρmk,B zmk,0 ẑρmk,B zmk,0

P
re

v.
cr

o
p

s Wheat 0.23 0.24 0.37 0.45 0.49 0.43 0.45 0.47
Barley 0.06 0.08 0.02 0.03 0.48 0.44 0.53 0.51
Rapeseed 0.41 0.44 0.49 0.38 0.02 0.05 0.01 0.02
Sugar beet 0.31 0.24 0.12 0.15 0.01 0.08 0.01 0.00

5 Conclusion

We consider a BLP problem designed to estimate pre crop effects on yield and chemical in-

put uses while simultaneously reconstructing farmers’ unobserved crop sequence acreages

from farmers’ observed (current and previous) crop acreages. Our estimation approach is

based on a well-defined statistical procedure and relies on crop sequence yield and chem-

ical input use models, as well as on an assumption stating that farmers are economically

rational when deciding their crop sequence acreages. We assess the empirical performance

of our approach, and it shows its ability to reconstruct the crop sequence acreage shares and

to recover the crop rotation effects. We consider two situations in the farmers’ rationality

assumption: a situation in which the reconstruction of the crop sequence acreage is entirely

determined by the total crop sequence gross margin, and a situation in which some noise is

added to this gross margin. Both situations lead to satisfactory estimates good estimations

of crop sequence acreage shares and crop rotation effects. This suggests that the estimation

approach we propose can uncover crop rotation effects, at least if observed crop acreages are

a major determinant of the crop sequence acreages choices in combination with the maxi-

mization of the gross margin.

The main weakness of this paper is that farmers’ choices of crop acreages (and thus, of

crop sequence acreages) do not allow us to estimate the crop rotation effects associated with

all the crop sequence pairs; their rationality leads them to choices that downplay the crop

sequence acreage shares of less profitable crop sequences.
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